Eigenvalues and Eigenfunctions

- Suppose that we have some linear differential operator *D* on some function *f* such that *Df* is a scalar multiple of *f*. Then *f* is an **eigenfunction** of *D* and the scalar multiple is an **eigenvalue**.
 - i.e. $Df = \lambda f$, where f is an eigenfunction and λ is its associated eigenvalue.
 - An eigenfunction is a type of eigenvector.
 - By convention, f is non-zero. f(x) = 0 is trivial as this is true for any D.
 - Allowable eigenvalues and eigenfunctions are usually restricted by boundary conditions.
- Why do we care about this?
 - Eigenvalue and eigenfunction analysis are important to the study of boundary value problems (BVPs), as they often express what a differential equation or its solutions are allowed to be given boundary conditions. This is especially important for partial differential equations (PDEs) with BVPs.
- Applications:
 - Vibrating strings. The ends of the string are fixed, so BVP.
 - Thermodynamics. The temperature at the ends of a rod is usually held constant.
 - Signals and systems
 - Quantum physics
 - Schrödinger equation: time-independent version takes the form $Df = \lambda f$
 - Particle in a box: the ends of the box are fixed
 - How to solve linear ordinary differential operator *D*. If *D* is ordinary:
 - Substitute into $Df \lambda f = 0$ to get a linear homogeneous ODE.
 - Obtain the characteristic polynomial and solve.
 - Use superposition to obtain the general solution.
 - Substitute boundary conditions into general solution.
 - Solve for as many unknowns as you can.
 - o Done.
 - Compare this process to eigenvector analysis of matrices.